宇宙大爆炸(一):何处是中心

昨天第二遍完整的又把央视”探索.发现”的《宇宙大爆炸》四集重新看了一遍,这种不可多得的讲述宇宙起源的记录片,我怎么能放过呢。高三那年,突然对化学,物理产生极大的兴趣,可惜为了应试,也未能多研究,这一次算是安慰一下了,(感兴趣的朋友还可以参考我在06年的日志”霍金北京《宇宙的起源》演讲全文“),以下是我的观片笔记:

第一集:何处是中心
我们在宇宙中处于怎样的位置,宇宙有没有起源,如果有,它怎样起源?

公元前5世纪,爱琴海的萨摩斯岛上,有一位发明了几何学中勾股定理的数学天才毕达哥拉斯,从球型是最完美的几何体的观点出发,认为大地是球型的,而且所有天体都是球型的,它们的运动是匀速圆周运动。并认为地球是宇宙的中心,周围是空气和云,再往外是围绕地球做圆周运动的行星,如月亮、太阳等,再往外是恒星所在之处,最外面是永不熄灭的天火,这就是毕达哥拉斯的宇宙模型。但他并没说明地球有多大,日月星辰离地球有多远。

最早算出地球大小的人是公元前3世纪的希腊天文学家埃拉托西尼。他听说在阿斯旺附件有一口深井,在夏至的时候,太阳光照能射到井底,这表明,夏至时,太阳光在当地是垂直入射的;然后他又在埃及北方的一个城市亚历山大找了一个方尖塔,在夏至那一天,测量了斜入射的太阳光与垂直的方尖塔之间的角度,这个角度其实是从阿斯旺到亚历山大这一段距离弧长的圆心角,于是他算出了地球的周长约是三万九千多千米(现在实测是四万千米,几乎相差无几了)。

月球离地球有多远呢?当时希腊人已经猜测到,月食是因为地球走到太阳与月球之间而引起的。出生于萨莫斯岛的阿利斯塔克提出,测量月食时掠过月面的地影与月球的相对大小,利用几何学方法,可以算出以地球直径为单位的地球至月球的距离。

公元前150年,古希腊又出了一位叫依巴谷的天文学家。依巴谷重复了这项工作,依巴谷得出地球到月球距离是地球直径的三十倍。根据埃拉托西尼求得的地球直径计算,月球到地球的距离约等于三十八万公里,他还同时得出了地球与太阳的距离:弦月的时候,地球、月亮和太阳组成一个近似的直角三角形,于是得出太阳到地球的距离是月亮到地球距离的19倍,当然了这个精度与现测的结果相差有点大,但他的结果显示出太阳比地球要大得多。依巴谷思考,一个很大的天体不可能围绕一个小的天体来运行,这已经隐含了日心说的概念。

公元140年,埃及的亚历山大城的希腊裔天文学家托勒密,提出了一个完整的地心体系,所有能观测到的行星都是围绕着地球做顺时针周周运行,并提出了本轮和均轮的概念来解释所观测到的行星的运动规则。

然而到16世纪的时候,波兰天文学家尼古拉·哥白尼勇敢地站出来表达了相反的观点。他认为,宇宙应该是简单的和谐的,没有托勒密所描述的那么复杂,是地球绕太阳,而不是太阳绕地球旋转,这样根本不需要均轮的概念。这一日心学说改写了托勒密延续千年的宇宙模型,开启了宇宙学革命性的一刻。

哥白尼死后66年,德国天文学家开普勒在1609年《新天文学》一书中宣布,他用丹麦天文学家第谷留下的精密观测资料,发现行星是沿着椭圆轨道围绕太阳运动,从而打破了天体必须做匀速圆周运动的传统观点,并彻底消除了托勒密体系中的本轮和均轮。

1609年底,意大利物理学家伽利略,造出了一台放大率三十二倍的望远镜,并开始观测天体,并被木星所吸引,并有了一个惊人的发现:在木星周围有四个暗弱的星体在围绕着它运转(也就是后来我们称的伽利略卫星),这彻底宣告了托勒密地心体系的终结,因为人类第一次发现了有天体围绕不是地球的行星在运行。

这个时候,牛顿终于出场了。牛顿生于1642年。1661年,他离开家乡伍尔索普,前往剑桥大学三一学院,于1665年毕业。随后的18个月,他回到家乡躲避瘟疫,研习数学,发明了微积分。1667年,牛顿回到剑桥,于次年成为剑桥大学卢卡斯数学教授。不久,他对伽利略的望远镜进行了改良,他在里面加了一片平面的反光镜,这使得镜筒变短,并观察到更清晰的图像。

开普勒的发现和伽利略的观测结果,都支持哥白尼的日心学说,但有一个问题还没解决:究竟是什么原因维持着这些天体的运动?开普勒曾经猜想也许是磁力,而真正解决这个问题的是牛顿,这就是我们高中物理都学过的”万有引力”:一个大质量的物体,才可以把一个较小的物体吸引到自身上来,所以,苹果才会从树上落下来。也是”万有引力”使得人能够站在移动的地球上。”万有引力”让宇宙中所有的行星保持运动,宇宙也因此而永恒不变。

1716年,英国天文学家哈雷提出利用金星凌日的机会来测量太阳到地球的距离,可惜金星凌日十分罕见,直到1772年,法国天文学家潘格雷在分析了1769年金星凌日时各国天文学家的全部观测资料后,得出太阳与地球的距离为1.5亿公里。这时人们开始在想能否测量恒星到地球的距离呢。

伽利略早就提出了测量恒星到地球距离的方法:由于地球围绕着太阳运转,如果把地球围绕着太阳运转的轨道两端作为观测点,看看两点上所观测到的恒星的位移,这就是三角测量,就可计算出来。但由于实测非常困难,直到1836年,三位不同国籍的天文学家才根据伽利略的方法才成功的对恒星距离进行了测算。三位科学家中有一位俄国人斯特鲁维,他测出织女星的视差是0.125角秒(1角秒视差对应的距离是太阳到地球距离的20万倍),恒星的距离就这样算出来了,现在知道织女星离我们有26 光年,也就是说织女星发现的光要过26年后,才能到达地球,恒星真正是远啦。

那三位科学中,有一位定居英国的德国人威廉·赫歇耳,他认为,假如所有恒星的真正亮度与太阳相同,那么看上去亮度越暗的,距离就应该越远。他用这种方法,估计银河系的尺度至少为2600光年,从此,人类的视野从太阳系扩展到了更为广阔的宇宙空间。

1845年,爱尔兰中部的比尔城堡,第3代罗斯伯爵威廉·帕森斯,在这里建造了一架口径1.8288米,重达10吨的望远镜,它是当时世界上最大和倍率最高的望远镜。使用这架望远镜,帕森斯伯爵看到了一个呈旋涡状的美丽星云。这是有史以来人类首次观测到旋涡星系。天文学家们后来了解到,这个旋涡星系的距离为2100万光年,远远超出了银河系10万光年的范围。

1842年,在维也纳,一个名叫多普勒的奥地利物理学家,发表了一篇讨论双星颜色的论文,提出了可以通过恒星的光谱鉴别出谱线的元素构成和恒星的运动趋势,是远离还是朝向我们运动。这是多普勒运用夫琅和费线的一个创造。如果光源在向我们接近,夫琅和费线就会向光谱的蓝端移动,这叫”蓝位移”。如果光源在后退,这些谱线会向光谱的红端移动,这叫”红位移”。

1859年,英国天文学家威廉·哈金斯,用一台装有高色散分光仪的20厘米望远镜,开始观测一些亮星的光谱,并在其中找出了钠、钙、镁等化学元素的谱线。1868年,他利用多普勒效应,首次从谱线的微小位移,测出了天狼星的视向速度。1880年前后,哈金斯对太阳光谱中构成谱线的化学元素进行分析,以了解太阳和恒星都是由何种成分构成的。哈金斯发现,太阳和恒星的光谱线中,都有着清晰的氢和氦的特征线。于是他得出结论:太阳和恒星主要是由氢和氦构成的。这一发现等于宣告太阳只不过是一颗普通的恒星。人类也因此彻底了解到,地球不是宇宙的中心,太阳也同样不是宇宙的中心。

 

添加评论