宇宙大爆炸(三):宇宙的密码

1946年的时候,移居美国的前苏联科学家乔治·伽莫夫,在勒梅特”原始原子”的基础上另辟蹊径,提出,宇宙中的氦,主要是在大爆炸后不久的高温条件下合成的理论。这个观点,给了大爆炸理论有力的支持。

在霍依尔提出”如果大爆炸真的发生过,请问爆炸所遗留下来的痕迹在哪里”的质疑以后,伽莫夫和他的学生就在研究这个问题。伽莫夫和他的学生们坚信,高热爆炸产生的辐射,即使是在100多亿年后的今天,也不会完全消失。伽莫夫依据什么,得出这样的结论呢?

如果我们烧一堆篝火,或者我们进行一次爆炸,这个当中会产一些光,这个光子呢就会向各个方向飞去,以后我们就再也没有机会看到这些光子。但是假如宇宙深处的外星人,他们正好朝这个方向看,他们是有机会能够看到这些光的。由于宇宙大爆炸是处处都在进行,所以我们朝任何一个方向看去,都应该能看到大爆炸产生的这个光;但由于宇宙的膨胀,这些光的能量降低了,波长也变长了,现在处于微波波段,温度是这个绝对温度的几K,但是我们用仪器应该是能探测到。

正是由于知道了这一点,伽莫夫才对找到大爆炸遗留的辐射充满信心。在铁幕的另一边,前苏联核武器设计的负责人泽尔多维奇和他领导的科研小组,在完成氢弹的设计研究工作后,也开始研究宇宙大爆炸理论,他们也注意到,大爆炸过后会有余光残留下来。
由于长期从事国防研究,他们一直关注着美国在电子技术方面的最新进展。不久以后,美国贝尔实验室建立了一座用于卫星通信试验的,高灵敏度微波天线。苏联人注意到,这座天线的灵敏度应该足以探测到大爆炸的遗迹。然而阅读美国人关于这座天线的实验论文,似乎并没有提及这样的热辐射,这使苏联人一度认为,宇宙大爆炸理论也许并不成立。

实际上,贝尔实验室对这座天线性能的测试并不彻底,对卫星通信来说这也不是必要的。卫星通信实验结束以后,贝尔实验室的两位科学家 阿诺·彭齐亚斯和罗伯特·威尔逊希望用它做一些射电天文研究,在正式开始研究以前,他们决定先进行严格的测试和校准,但在测试和校准的过程中发现老有一种多余的噪声。他们把天线对向纽约,结果没发现任何特别的状况,这意味着纽约并没有发出那种频率的噪声。不管把天线对着哪个方向,烦人的噪声总是挥之不去,即使把天线指向太空,噪声依然存在。

他们在检查以后发现,天线里面住了一对鸽子。在他们接管这里之前,天线闲置了很长时间。鸽子住在里面,弄得到处都是鸽粪,威尔逊和彭齐亚斯觉得,这下总算找到根源了。鸽子事件以后,奇怪的无线电噪声仍然不断,威尔逊和彭齐亚斯用了一年的时间,彻底检查他们的天线。到第二年,他们快要绝望的时候,彭齐亚斯偶然和同行伯克聊起此事,伯克说:他的一位朋友,曾听过普林斯顿大学一位叫皮伯斯的学者作过的一个报告,谈到他们也在进行类似的工作。伯克告诉彭齐亚斯,他们发现的奇怪噪声,可能正是普林斯顿大学狄基小组正在寻找的东西。于是彭齐亚斯赶紧给狄基打去电话。

普林斯顿大学的狄基教授,是一位很有思想的科学家,他认为宇宙既不像霍伊尔他们认为的是一个永恒不变的处在稳恒态的宇宙,也不像勒梅特和伽莫夫他们所认为的是由惟一的一次大爆炸而产生的,他认为宇宙是处在一种膨胀收缩再膨胀的过程中,同时他也认为当宇宙收缩到一个很小的体积的时候,根据热力学原理,这时它的温度肯定是非常高的,而且当宇宙膨胀到今天的这种程度的时候,肯定还有某种留存下来的温度存在,于是他就想来测量这个剩余的热量。

狄基教授在第二次世界大战时,曾从事雷达研究,并发明了计量微波辐射的仪器。这个仪器正好在此次实验当中用上。他让助手之一的皮伯斯从事理论计算,而另一位助手威尔金森则设计实验仪器。他们将天线安装到了普林斯顿大学的屋顶上。就在他们自信把探测仪器调试得完美无缺的时候,接到了罗伯特·威尔逊的电话。

当时去接电话的是狄基教授,他就意识到贝尔实验室有可能得到了类似的结果;狄基教授在放下电话以后,很失望的说了一句:哎呀,我们被别人抢先了。狄基教授和他的同事们,立刻带上自己的资料来到贝尔实验室,他们要亲身体会这个无线电波的噪声。当罗伯特·威尔逊和彭齐亚斯看到狄基教授带去的仪器和记录时,他们终于明白,那个推论中的宇宙大爆炸的痕迹,被他们无意中发现了。

”宇宙微波背景辐射”也就是大爆炸痕迹的发现,以确凿的证据证明了,宇宙的确曾经处于与今天完全不同的高温高密状态,这是继哈勃发现宇宙膨胀之后,宇宙学研究上的又一个重大突破。

认为宇宙起源于原始原子,并以此说服爱因斯坦的勒梅特,在他临终前几天听到了这个消息,他的宇宙创生于”没有昨天的那一天”的猜想,终于被科学所证明。而建立了完整的大爆炸理论,并对遗迹辐射温度做出科学预言的伽莫夫,则以他特有的幽默来回应人们的祝贺:”我也许确实丢过一分钱。但当有人在街上捡到一分钱时,我也不能说那一定就是我丢的。”这位谦逊的物理学家于1968年去世,而彭齐亚斯和威尔逊,也因为自己的发现,在13年后的1978年,获得了诺贝尔物理学奖。

宇宙微波背景辐射被发现的时候,斯蒂芬·霍金正在剑桥攻读博士学位,很可能是这件事情促成了他选择大爆炸和爱因斯坦的相对论作为博士论文的研究主题。

博士论文必须要包含大量的原创知识,这是一个很大的负担。因为你必须要在3年的时间内,作出这样一篇论文,里面一定得要有成果,霍金当时还没找到合适的论文题目,在剩下不到一年的时候,斯蒂芬·霍金受牛津大学数学教授罗杰·彭洛斯的启发,决定从爱因斯坦的相对论入手,看看它对宇宙还能预示些什么。霍金的导师希尔玛是彭洛斯的好朋友,希尔玛就决定到牛津去,听听彭洛斯的意见。

彭洛斯正在研究爱因斯坦方程可能导致的另一种结果,即由于引力的驱使,大量的物质,坠入一个密度极大的区域中,以致光都无法从中发出来,这个区域就是”黑洞”。黑洞中存在着一个密度无限大的点,在这里,一切已知的物理学定律,都要失效,这就是所谓时空的”奇点”。比如大质量的恒星,在它的演化过程中必然要发生坍塌,坍塌到一个奇点上。霍金就从彭洛斯教授的数学方面的研究结果得到启发,他想如果这个坍塌过程反过来,实际上就是一个大爆炸的过程,由于就形成了霍金从数学角度来研究爱因斯坦方程所得到的结果,并且非常有力的支持了大爆炸理论。

1970年,霍金和彭洛斯在论文中证明,如果广义相对论和经典物理学是正确的,那么,时空中一定存在着 “奇点”。因此黑洞和宇宙大爆炸都不是奇怪的事,而且是不可避免的。

彭齐亚斯和威尔逊的观测只是在一个波长处进行的,虽然与绝对温度3度的黑体辐射在该波长的强度相符,但要进一步证实它是不是大爆炸的遗迹,是否具有完美的黑体辐射谱,还需要在其他各个波长,特别是毫米波段进行精确测量。 1975年,美国航空航天局决定,采纳本局戈达德航天中心物理学家约翰·马瑟等人的意见,专门研制一颗卫星,用以对宇宙微波背景辐射,进行精确测量。这颗卫星被命名为COBE。马瑟负责辐射谱仪的研制,还担任了COBE卫星的总负责人。1989年一个多风的早晨,美国航空航天局将COBE卫星送上了太空。COBE 最初9分钟的观测结果就表明,宇宙微波背景辐射确实具有完美的黑体辐射谱,大爆炸理论得到了进一步的证实。

此时大爆炸理论已接近完整。但是仍然有一个重要的问题,如果要形成星系,最初的宇宙必须不是完全均匀的。彭齐亚斯和威尔逊发现的辐射应该能够反映这一点。但它却似乎与方向无关,如果大爆炸理论正确,那么各方向上的辐射必定有所不同,这一定要有观察的证明。

星系结构的不均匀分布,导致宇宙空间呈现一种大尺度的结构状态。这一点,尤其在河外星系表现得非常明显。河外星系的空间尺度之大,经常要以10亿光年来计算。那么,这些大尺度结构又是怎样形成的呢?美国的皮伯斯和前苏联的泽尔多维奇等人认为,早期宇宙中,物质密度可能存在一些非常微小的不均匀性,它们在引力的作用下逐渐成长为星系、星系团、以及更大尺度的结构。如果是这样,宇宙早期的背景辐射必须在各方向上有一些微小的起伏,天文学家称之为各向异性。而探测宇宙微波背景辐射中的各向异性,是COBE卫星的另一个重要任务。

美国伯克利大学教授乔治·斯穆特用一个类似普林斯顿大学使用过的定向号角天线,开始了一系列试验。他希望做出一张详细的地图,来标出大爆炸残留的遗迹,并勾画出银河及宇宙的结构。随后,斯穆特和他的小组,研制出了一套能消除包括地球大气层干扰在内的具备高灵敏度的仪器,并利用COBE卫星送上太空。

COBE卫星升空不久,就发回来了准确的观测数据。在第一天快要结束的时候,斯穆特教授得到了一张清晰度前所未见的宇宙照片。他和他的小组花了一整年的时间,收集了3亿个观测数据,用计算机绘制出了一张宇宙微波背景辐射的图像,斯穆特将它称之为宇宙蛋。

这个宇宙蛋所显示的,是大爆炸结束时宇宙的图像,粉红和蓝色的区域分别表示温度的变化。宇宙微波背景辐射是非常均匀的,但是如果我们去掉均匀的背景,就可以看到各向异性。红色代表温度较高的区域,蓝色代表温度较低的区域。
COBE的探测结果,使大爆炸的理论再次得到观测的证实,大爆炸也终于被大多数人所接受。COBE的成功也有约翰·马瑟的功劳。由于约翰·马瑟和乔治·斯穆特在宇宙微波背景辐射研究中的贡献,他们在2006年获得了诺贝尔物理学奖。然而,大爆炸的理论并非就此完美无缺,它仍然还有一些问题需要解决。

 

添加评论