宇宙大爆炸(四):宇宙的模样

这是央视《探索.发现》栏目 宇宙大爆炸的最后一集:宇宙的模样

狄基没有能够与彭齐亚斯和威尔逊一起获得诺贝尔奖,这让很多人感到遗憾,但他却并没有停留。对于狄基来说,微波背景辐射的发现,并不意味着宇宙大爆炸理论就没有问题了。1978年11月13日,狄基教授到康奈尔大学做关于宇宙学的学术报告,他提出了一个关于宇宙学的问题,这个问题跟宇宙空间的几何形状有关:

根据广义相对论,充满物质的四维时空(长,宽,高,时间)是弯曲的,但其中三维空间的几何形状,则有几种不同的可能性。爱因斯坦曾认为宇宙空间是球型的,弗里德曼则提出过双曲型的宇宙,介于两者之间的是平直空间。我们生活的宇宙究竟是哪一种几何形状呢?

根据爱因斯坦的广义相对论方程,定义出了临界密度的概念。如果宇宙空间中物质的平均密度等于临界密度,那么宇宙空间就是我们所熟悉的平直空间,如果大于临界密度,宇宙空间就是封闭的球形,如果小于临界密度,宇宙空间就应该是开放的双曲形。临界密度的数值是非常小的,它就相当于一个立方米里只有一个最轻的原子,比如说是质子或氢原子的这样一个密度。
而当时人们还不能精确测量宇宙的密度,但是知道它与临界密度属于同一个数量级,也就是说相差不会超过几倍。狄基认为,这里有个奇怪之处,这意味着在大爆炸后的一秒钟,宇宙物质密度与临界密度相差不超过一百万亿分之一,否则今天的宇宙密度就会远远偏离临界密度。

这个奇怪的现象怎样解释呢?狄基提出了问题,但他自己也无法回答。这个问题像一颗种子,在当时的听众一位在粒子物理学研究组做博士后 阿伦·古思心里,埋下了一颗种子。

在听了狄基的报告后不久,古思开始和华裔物理学家戴自海合作,研究宇宙大爆炸中磁单极产生的问题。(注:磁单极子是理论物理学弦理论中指一些仅带有北极或南极单一磁极的磁性物质,它们的磁感线分布类似于点电荷的电场线分布)

1979年,古思等人在研究中发现,在宇宙大爆炸中有可能产生非常多的磁单极,并且会一直存留到现在。但是,尽管人们曾用实验去寻找,却一直没有找到。古思提出,解释这种结果的一种办法是:磁单极产生后,宇宙发生了一次极迅速的指数式膨胀。已经产生的磁单极个数不变,而宇宙空间的体积在指数膨胀中却迅速增大,于是磁单极变得很稀少,不会再与实验结果相冲突。 古思为这种发生在宇宙早期的指数膨胀起了个名字,叫做”暴胀“。

这时古思回忆起一年前狄基的报告,他意识到,为了解决磁单极问题而提出的暴胀理论,其实也可以解决狄基的宇宙几何问题:如此剧烈的膨胀会把原来弯曲的空间拉直,这就好像我们用力拉一块褶皱的橡皮膜可以把它拉平一样。因此,如果在宇宙的极早期发生过一次暴胀,那么我们可观测的这部分宇宙几何就非常接近平直空间了。

暴胀理论不仅解释了为什么可观测的宇宙基本上是均匀了,而且还说明了为什么在这个均匀中还有些小的不均匀性。

原来,我们今天看到的尺度达几百万光年的空间,在暴胀发生以前都曾经挤在比原子核还要小的空间里。在这样小的空间里,量子力学的测不准效应非常明显。由于测不准效应在宇宙暴胀前很明显才产生了现在一些不均匀性。

尽管暴胀理论可以解释一些理论上的重大疑难,但它究竟是否正确,还需要用观测加以检验。按照暴胀理论,我们可观测的这部分宇宙的几何非常接近平直,所以物质的密度应该等于临界密度,这是否符合我们的观测呢?

我们用望远镜能直接看到星系中恒星发出的光,根据这些星光我们可以推断宇宙中恒星贡献的物质密度。这个密度只有临界密度的百分之一左右。当然,我们知道恒星之间以及星系之间都分布着一些气体。但即使把这些星际物质或是气体与尘埃贡献的密度加添进来,把所有这些加在一起,总密度也不超过临界密度的百分之五。

当古思提出他的暴胀理论的时候,科学家们早已发现,宇宙中还存在着一种神秘的不发光的物质,即:暗物质。

1934年,加州理工学院的第一位从事天体物理研究的学者瑞士籍的弗里兹·兹威基教授,研究了星系团内星系的运动,首次提出了暗物质存在的可能性:
星系团中有成百上千的星系被星系团自身的引力束缚着,它们的运动速度与引力必须达成平衡,引力越强,运动速度越快。兹威基发现,星系团内的星系远远不够产生这么大的引力。一定还存在着其他我们看不见的物质,兹威基把它称之为暗物质。暗物质存在的直观证据是引力透镜现象。当遥远星系发出的光经过一个星系团附近的时候,光线会被星系团的引力所偏折,星系团就好像是一个透镜。当我们朝这个方向望去,就会看到光弧、甚至同一个星系的几个不同的像。

虽然没有人直接探测到暗物质,也不知道暗物质是什么,但是通过引力人们可以测出它的总量。测量的结果是:普通物质加上暗物质,总量只占临界密度的百分之二十到三十,并不像暴胀理论预言的那样达到临界密度。

问题出在哪儿了?是观测结果有徧差,还是在现有理论里遗漏了什么?

这时还面临着别的矛盾,其中一个就是宇宙的年龄问题。按照大爆炸理论,宇宙的年龄首先取决于哈勃常数,也与宇宙的密度有关。所谓”哈勃常数”,是指按照”多普勒原理”,用光谱位移,表示宇宙中星系退行速度与距离成正比关系的比例常数。
按照恒星演化理论,最古老球状星团的年龄可达120亿年。那么宇宙的年龄呢?

1990年,美国太空总署的航天飞机把一台望远镜送上了太空,并命名为哈勃望远镜。哈勃望远镜拍出了许多美丽的星空图景,一下子拉近了我们和这些星系的距离。

上个世纪90年代初,由劳伦斯·伯克利实验室的索尔·珀尔米特领导的超新星宇宙学研究组,开始在茫茫太空中,寻找远处的超新星。不久,由霍普金斯大学的亚当·瑞斯等人组成的,高红移超新星研究组,也加入了竞争的行列。他们对选定天区进行曝光,然后再仔细比较和上次图像的异同。一旦发现超新星,就拍下它们的光谱。这两个小组的天文学家吃惊地发现,遥远超新星的亮度比预期的暗。这意味着这些超新星的距离比预期的要远。按照过去的理论,由于引力的作用,宇宙的膨胀速度会越来越低,这样,无论如何也不可能达到如此远的距离。要想解释观测结果,唯一的可能是宇宙膨胀速度越来越快。普通的物质,甚至暗物质都只产生引力使宇宙的膨胀减速,但有一些非常特别的物质能产生斥力,使宇宙的膨胀加速,这个物质是什么呢??
不知道,但我们先叫它暗能量。

当年爱因斯坦引入的宇宙学常数就是一种暗能量。但是并没有一种物理理论能够解释为什么会有宇宙学常数,或者宇宙学常数应该是我们观测到的这么大。迄今为止,天文学家也不敢肯定,暗能量就是宇宙学常数。有许多关于暗能量的假说,但是都不能很好的解释它的性质。暗能量的发现,如此出乎人们的预料,1998年,它被评为当年度的世界十大科学发现之首。

尽管人们不了解暗能量是什么,但是由于它的存在,宇宙的膨胀并没有减速而是在加速,因此宇宙的年龄比原来根据减速的假定估计出的数值要长。人们又开始对暴胀理论预言的平直宇宙充满信心,也许宇宙的总密度确实等于临界密度,其中30%是物质,而余下的70%则由暗能量提供。

1998年12月29日,一批来自美国、意大利等国家的科学家,在南极放飞了一个高灵敏度的氦气球,气球升入35公里的高空,在大气环流的作用下,围绕南极点飞行了11天后,在离放飞点不足50公里的地方成功降落,气球上携带着最新研制的微波背景辐射探测装置,科学家们对这次飞行观测收集的数据进行了近两年的分析,观测的结果表明,宇宙的几何正如暴胀理论预言的那样,完全是平直的。

2001年6月30日,美国航空航天局的MAP卫星发射升空。卫星被送到距离地球一百多万公里的拉格朗日点上,在这里,太阳、地球、卫星始终在一条线上。卫星背向太阳和地球缓缓扫描着天空,收集着来自宇宙深处的数据。2002年9月,威尔金森因病不幸去世,未能亲眼看到卫星数据的发表。美国航空航天局将卫星改名为WMAP,以纪念威尔金森的贡献。

2003年,WMAP第一年观测的数据发表了,观测结果的精度大大提高,与气球的实验结果也非常一致。我们终于知道,宇宙空间是平直的,暴胀理论得到了初步的证实。同时,宇宙的年龄和大尺度结构问题在这个理论框架内也得到了完满的解决。《科学》杂志把这评价为2003年度最重大的科学进展。

我们终于了解到,宇宙是在大约140亿年前由一次大爆炸所产生,宇宙中30%是物质,70%是我们还不知道究竟是什么的暗能量所构成,而在宇宙中由闪烁星星所组成的明亮星系它们的分布并不均匀,此外的我们还知道宇宙的究竟是平直,它还在加膨胀… …

 

添加评论